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A B S T R A C T

Dissolved oxygen (DO) is one of the critical parameters representing water quality in coastal environments.
However, it is labor- and cost-intensive to maintain monitoring systems of DO since in situ measurements of DO
are needed in high spatial and temporal resolution to establish proper management plans of coastal regions. In
this study, we applied statistical analyses between long-term monitoring datasets and satellite remote sensing
datasets in the eastern coastal region of the Yellow Sea. Pearson correlation analysis of long-term water quality
monitoring datasets shows that water temperature and DO are highly correlated. Stepwise multiple regression
analysis among DO and satellite-derived environmental variables shows that the in situ DO can be estimated by
the combination of the present sea surface temperature (SST), the chlorophyll-a, and the SST in the month prior.
The high skill score of our proposed model to derive DO is validated by two error measures, the Absolute
Relative Error, 1-ARE (89.2%), and Index of Agreement, IOA (78.6%). By applying the developed model to the
Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite
(VIIRS) products, spatial and temporal changes in satellite-derived DO can be observed in Saemangeum offshore
in the Yellow Sea. The analysis results show that there is a significant decrease in estimated DO between summer
of 2003 versus 2012 indicating summer coastal deoxygenation due probably to the Saemangeum reclamation.
This study shows the potential capability of satellite remote sensing in monitoring in situ DO in both high
temporal and spatial resolution, which will be beneficial for effective and efficient management of coastal en-
vironments.

1. Introduction

Dissolved oxygen (DO) in coastal waters has been declining in past
centuries, caused largely by the increases of both ocean temperature
and nutrients inputs attributed to human activities (Breitburg et al.,
2018; Diaz and Rosenberg, 2008). Declines of DO have been the subject
of recent discussion because they have negative impacts on marine
ecosystems (Rabalais et al., 2001) and biogeochemical processes
(Rabalais, 2004; Middelburg and Levin, 2009), which subsequently
change ocean productivity and biodiversity, for example, salmonid
embryos (Doudoroff and Shumway, 1970). Deoxygenation in the open
ocean has only been recently reported (Keeling et al., 2010), while
extensive DO changes in coastal areas have been known for a long time

(Diaz and Rosenberg, 2008). These changes can be considered critical
stressors in coastal and oceanic environments, coupled with other en-
vironmental stressors such as ocean warming and acidification (Farrel,
2016; Gobler and Baumann, 2016). Proper management to protect
ecosystem services requires extensive observations, effective analysis,
and improved prediction of DO in both coastal and ocean systems.

Observing and monitoring changes in spatio-temporal patterns of
DO in coastal systems have become crucial to evaluating the water
quality in coastal environments (Breitburg et al., 2018). However, this
is inherently difficult to measure DO with high spatial and temporal
resolution. Recently, satellite remote sensing techniques are more fre-
quently applied to collect water quality information (Goetz et al., 2008;
Choi et al., 2012; Kim et al., 2014; Kim et al., 2017). The advantages of
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remotely sensed datasets over in situ measured ones are an increased
temporal frequency and a greater spatial coverage, providing synoptic
and consistent data sets useful for integrated analysis, which is critical
for environmental management and planning.

The environmental variables that can be estimated by satellite re-
mote sensed data have been limited to their optical properties based on
visible (e.g., suspended sediments, colored dissolved organic matters;
Kim et al., 2014; Miller and McKee, 2004; Siswanto et al., 2011; Zhang
et al., 2010), near-infrared (e.g., chlorophyll-a; Harvey et al., 2015;
Hellweger et al., 2004; Shen et al., 2012; Son and Wang, 2012), and
infrared (e.g., sea surface temperature; Kilpatrick et al., 2015; Kim
et al., 2017; Minnett et al., 2004) signals. Since the relationship be-
tween other water quality data (e.g., nutrients, chemical oxygen de-
mands, and DO) and satellite data is too complex to be modeled
(Gholizadeh et al., 2016), artificial intelligence frameworks, including
neural networks and machine learning, have been applied to estimate
recent water quality measurements (e.g., Kim et al., 2014; Sharaf El Din
et al., 2017). None of these studies, however, attempted to apply a
linear relationship between satellite data and specific water quality
variables.

This study attempts to extend the application of satellite remote
sensing techniques to retrieve DO concentration in coastal surface
waters by using a multiple-regression approach. Multiple level-2 pro-
ducts of ocean color sensors, such as Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Visible Infrared Imaging
Radiometer Suite (VIIRS), are correlated with long-term environmental
monitoring datasets in the eastern coastal region of the Yellow Sea. The
multiple regression model developed here is applied to produce high
temporal-and spatial-resolution satellite-derived DO data. For the case
study, the satellite-derived DO data are used to show the change in
coastal water quality before and after one of the world′s largest re-
clamation projects (Saemangeum). The next two sections describe the
study area and the methodology used for this study. Analysis and
findings are presented and discussed in the Results and Discussion. The
last section summarizes conclusions.

2. Materials and methods

2.1. Study area

The west coast of Korea (eastern Yellow Sea) is characterized by the
macrotidal condition up to ~10m tidal height at spring tide (Choi and
Kim, 2006; Hwang et al., 2014). The current study targeted the mac-
rotidal regime area (tidal range=1.2–7.2m) near the mouth of the
Geum River estuary (A in Fig. 1), nearshore of Saemangeum dike (B and
C in Fig. 1), and offshore (D in Fig. 1). These areas were selected to
represent various conditions of coastal environments, including es-
tuarine, nearshore, and offshore conditions.

Until the construction of the dike, the study area was originally
characterized by huge estuarine and tidal flat regions (~400 km2) off
the mouths of two rivers, the Mangyeong and Dongjin Rivers. The area
has undergone extensive reclamation, including the world′s longest sea
dike (33.9 km) completed in 2006. A significant amount of freshwater
still flows into the lake, subsequently flowing into the Yellow Sea via
the two sluice gates (Lee et al., 2008). Before dike construction, large
tidal flats covered an area of ~233 km2 inside the dike, with a width of
5 km in many places, extending to a maximum of 15 km at the mouth of
the estuary (Ryu et al., 2011).

2.2. In-situ field monitoring dataset

The in situ measured water quality data in surface waters off of the
dike and near the Geum River mouth were collected as part of the
Marine Environmental Monitoring System of Korea (K-MEMS) from
August 2002 to December 2016 (http://www.meis.go.kr). According to
the Korean water quality manual, A total of 15 stations were seasonally

monitored by field instruments, which measured water temperature,
salinity, pH, DO, and Secchi depth, and by laboratory experiments
providing suspended sediments (SS), chlorophyll-a (Chl-a), chemical
oxygen demands (COD), ammonia, nitrite, nitrate, dissolved inorganic
nitrogen (DIN), total nitrogen (TN), dissolved inorganic phosphorus
(DIP), total phosphorus (TP), and silicate (Ministry of Oceans and
Fisheries, 2013a). The in situ observation occurred every three months,
in February, May, August and November, representing each season.

In situ monitoring stations are divided into three groups (Fig. 1);
region A (eight stations) representing the region under the influence of
the Geum River, regions B (three stations) representing nearshore of the
northern dike, and region C (four stations) representing nearshore of
the southern dike where two watergates were located. A total of 806
observation data were collected from 15 stations and used for time-
series presentation in 2002–2016. Data collected from the stations in
each region were spatially averaged for each sampling month, which
were then used for correlation and multiple regression analyses (model
development). Region D representing offshore was used for model ap-
plication only since in situ monitoring station does not exist. To com-
pare averages of 16 in situ water quality parameters before and after the
dike construction in 2006, one-way ANOVA and post-hoc test were
conducted using SPSS 12.0. In case of equal variances among datasets,
ANOVA and least significant difference (LSD) test were conducted. In
case of unequal variances, Welch′s test and Games-Howell nonpara-
metric test were applied. (Table S1).

2.3. Satellite remote sensing dataset

The NASA Ocean Biology Processing Group (OBPG) provides the
MODIS onboard the Aqua and the VIIRS onboard the Suomi National
Polar-orbit Partnership (SNPP) through the NASA ocean color website
(http://oceancolor.gsfc.nasa.gov/). Daily Level-2 Chl-a concentration
and remote sensing reflectance (Rrs) at various wavelengths (Rrs(λ)),
and daytime sea surface temperature (SST) from the MODIS-Aqua and
the VIIRS sensors passing over the Korean west coasts including the
Saemangeum area and the Geum River were obtained for the periods of
July 2002 to December 2014 (MODIS) and January 2012 to December
2016 (VIIRS), respectively (Fig. 1). The NASA standard atmospheric

Fig. 1. Study area including K-MEMS monitoring stations (represented by dots)
and boxes for the satellite data extraction for model development (yellow) and
application (white). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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correction algorithm with the near-infrared (NIR) radiance corrections
(Bailey et al., 2010; Stumpf et al., 2003) is used to derive both the
MODIS-Aqua and the VIIRS level-2 ocean color data. The MODIS and
VIIRS Chl-a data are obtained using the NASA standard ocean color
chlorophyll algorithm for MODIS (OC3M; O’Reilly et al., 2000). The
daytime SST products from the MODIS and VIIRS data are derived using
the long-wave SST algorithm with MODIS bands at 11 and 12 µm
(Minnett et al., 2004). More information about the MODIS-Aqua and
VIIRS Level-2 data can be found at the NASA ocean color website. The
Level-2 data were remapped at 1×1 km spatial resolution for the
Korean mid-west coasts (KMWC) with a standard Mercator projection.

The MODIS and VIIRS total suspended sediments (TSS) data were
generated using the regional TSS model (Siswanto et al., 2011; Son
et al., 2014) to create TSS maps in KMWC as follows:

= + + −Log TSS R R R
R

( ) 0.649 25.623·[ (555) (670)] 0.646· (490)
(555)rs rs

rs

rs

(1)

The satellite climatology composite images of Chl-a, SST, and TSS in
2002–2016 were derived from the daily MODIS- and VIIRS-derived
products to characterize the temporal and spatial variation of Chl-a,
SST, and TSS in the study area (Fig. 2). Data collected from pixels in
region A, B, and C were spatially averaged for each sampling month,
which were then used for multiple regression analyses (model devel-
opment).

2.4. Data analysis

To identify the most correlated environmental factors for DO var-
iation, the linear relationship with a correlation coefficient was ana-
lyzed. The in situ water quality data within each region A, B, and C were
spatially averaged to get a single value for the corresponding months. A
total of 166 samples were available during the 2002–2016 period, ex-
cluding data points of null values. The seasonal time series of each
environmental variable was correlated with the DO data. A total of
fifteen variables were compared in coastal waters: water temperature,
SS, Chl-a, salinity, pH, COD, ammonia, nitrite, nitrate, DIN, TN, DIP,
TP, silicate, and Secchi depth.

In order to develop an empirical algorithm to estimate DO from
satellite data, in situ observed DO and satellite-derived data were used
in the stepwise multiple regression analysis. Monthly satellite-derived
SST, Chl-a, and TSS data were also averaged for each box (A–C in Fig. 1)

producing a total of 166 vectors. For those satellite data, the monthly
average values in the sampling month (SST, Chl-a, and TSS) as well as
the monthly average values one month prior to the sampling (SSTm-1,
Chl-am-1, and TSSm-1) were used as input variables to incorporate po-
tential delayed effects (e.g., Kim et al., 2017; Yang et al., 2018). Of the
166 data samples, one half (83 samples) were randomly selected for the
stepwise multiple regression and the other half (83 samples) were used
for validating the algorithm. Both sets of the model development and
validation samples represent well the statistical characteristics of the
population, and they show wide levels of DO concentrations and no bias
in seasonality. In each step of stepwise multiple regression, a predictive
(input) variable is added to the model when it has an F-value that is
greater than two. Normality of residuals is tested using Kolmogorov-
Smirnov and Shapiro-Wilk′s W. Autocorrelation of residuals is checked
by Durbin-Watson statistic. The residual statistics are given in supple-
mentary Table S2. To evaluate the algorithm performance, two error
parameters including the absolute relative error (ARE) and index of
agreement (IOA) were calculated (Wilmott et al., 2012). Both of the
correlation and multiple regression analyses were examined using SPSS
12.0.

3. Results and discussion

3.1. Long-term environmental condition based on the in-situ monitoring
system

The data collected from the K-MEMS, including temperature, sali-
nity, SS, Chl-a, pH, DO, COD, ammonia, nitrite, nitrate, DIN, TN, DIP,
TP, silicate, and Secchi depth, show the environmental variability for
the period between 2002 and 2016. In order to evaluate the long-term
variability pattern, the data from each station were spatially averaged
for each region. Fig. 3 shows all available data for three regions outside
of the Saemangeum dike during the study period of 2002–2016.

The temperature in all three regions was relatively uniform and is
characterized by a distinct pattern of seasonal variability ranging from
2 °C during winter to 28 °C during summer (Fig. 3a). Such spatial
homogeneity can also be found in several other water quality para-
meters like Chl-a, pH, DO, and DIP, TP. In contrast, spatial variability in
salinity shows clearly that the regions B and C (e.g., offshore of the
Saemangeum dike) have water masses different than that of the region
A that is under the influence of substantial input of freshwater from
Geum River. Salinity in the region A was higher ranging from 15 and

Fig. 2. Climatology of (a) satellite-derived sea surface temperature (SST), (b) total suspended solids (TSS), and (c) chlorophyll-a based on the MODIS and VIIRS
satellite data collected during 2002–2016. Data for model development were monthly averaged within boxes (dark grey). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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33, while that in the regions B and C did not go below 25 (Fig. 3d and
Table S1). Such spatial variation was also found in several other water
quality parameters, including ammonia, nitrite, nitrate, DIN, TN, and
silicate (Fig. 3 and Table S1), which are mostly considered as river-
driven materials.

Temporal variability of SS in regions B and C (i.e., offshore of the
dike) were relatively higher during years before 2006, while it shows
lower SS concentration after 2006 (Fig. 3b and Table S1). This change
must be related to the completion of the dike construction project at
2006, after which less input of suspended materials from the land oc-
curred (Son and Wang, 2009).

A similar change in the temporal pattern before and after 2006 is
also observed in ammonia, nitrate, DIN, TN, DIP and TP (Fig. 3 and
Table S1). The change before and after 2006 can be summarized as an
significant increase in COD (p < 0.05), an increase in the range of DO,
and a significant decrease in the average level of SS, ammonia, nitrate,
DIN, TN, DIP and TP (Table S1). Unraveling reasons for the changes in
those environmental parameters is beyond the scope of this paper, but

we can speculate that they must be related to the dike construction.

3.2. Correlation analysis of DO with environmental monitoring variables

Pearson correlation analysis was performed between DO at the
surface layer and various water quality data collected from the K-MEMS
database (Table 1). The variables with significant correlation
(p < 0.05) include temperature, salinity, Chl-a, COD, ammonia, ni-
trite, nitrate, DIN, TN, DIP, TP, silicate, and turbidity (i.e., Secchi
depth). The correlation coefficients for some variables, such as tem-
perature with DO, are larger than 0.7 (ranging −0.743 to −0.792),
indicating that temperature and DO are inversely related.

Such an inverse relationship is also noticeable in the scatter plot and
time-series comparison between temperature and DO in surface waters
(Fig. 4). During the summer months when the temperature is high, DO
is low, and vice versa. Based on the formula proposed by Benson and
Krause (1980, 1984) and Weiss (1970), percent saturation of DO was
86.7 ± 12.0% in region A with the range of 29.5–140.4%. Region B

Fig. 3. Long-term seasonal variations of surface in situ water quality parameters during 2002–2016. Dike construction was completed in April 2006 (light green bar):
(a) water temperature, (b) total suspended solids, (c) chlorophyll-a, (d) salinity, (e) pH, (f) dissolved oxygen, (g) chemical oxygen demand, (h) ammonia, (i) nitrite,
(j) nitrate, (k) dissolved inorganic nitrogen, (l) total nitrogen, (m) dissolved inorganic phosphorus, (n) total phosphorus, (o) silicate, and (p) Secchi depth. Blue, red,
and yellow lines represent the data from region A, B, and C in Fig. 1, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3. (continued)

Table 1
Pearson correlation coefficient and p-value by correlation analysis between in situ DO and other in situ water quality parameters in four regions of Saemangeum area.

Parameters Region A (n= 464) Region B (n=464) Region C (n=464) Region D (n= 464)

Coefficient p Coefficient p Coefficient p Coefficient p

Temp. −0.743 <0.001 −0.792 < 0.001 −0.785 < 0.001 −0.646 < 0.001
SS −0.024 0.599 −0.032 0.723 0.039 0.599 0.124 < 0.01
Chl-a 0.067 0.147 0.307 < 0.001 0.314 < 0.001 0.085 < 0.05
Salinity 0.315 <0.001 0.342 < 0.001 0.405 < 0.001 0.255 < 0.001
pH −0.015 0.751 −0.077 0.387 −0.055 0.459 0.066 0.109
COD −0.11 <0.05 −0.086 0.336 −0.118 0.108 −0.066 0.113
Ammonia −0.135 <0.01 −0.185 < 0.05 −0.16 < 0.05
Nitrite −0.147 <0.01 0.007 0.938 −0.107 0.145
Nitrate −0.043 0.356 0.179 < 0.05 0.2 0.006
DIN −0.054 0.244 0.111 0.213 0.098 0.182
TN −0.101 <0.05 0.139 0.118 0.131 0.074 −0.089 < 0.05
DIP −0.143 <0.01 −0.09 0.313 −0.162 < 0.05
TP −0.133 <0.01 −0.122 0.171 −0.142 0.053 −0.307 < 0.001
Silicate −0.2 <0.001 −0.093 0.322 −0.115 0.137
Secchi d. −0.062 0.182 −0.216 < 0.05 −0.368 < 0.001
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showed 86.9 ± 10.5% and ranged between 57.3% and 126.5%. Region
C averaged 88.3 ± 10.8% from the minimum of 59.6% to the max-
imum of 131.8% of DO saturation. In most cases, near-saturated DO
conditions were indicated (Fig. 4). Of note, region A showed two cases
of lower DO in February of 2008 at 4.03mg/L, an equivalent of 29.5%
DO at 2.5 °C, and 5.48mg/L, 41.4% DO at 3.5 °C. The development and
growth of salmonid fish embryos could be affected by any reduced DO
from the air-saturation level or from a higher level, even at favorable
temperatures (Doudoroff and Shumway, 1970). Therefore, it is im-
portant to monitor DO level in coastal and estuarine areas in near air-
saturated conditions with high spatial and temporal resolutions.

3.3. Multiple regression analysis of DO with satellite-derived variables

Six satellite-derived parameters of SST, TSS, and Chl-a during the
present and previous month were used to estimate in situ DO by ap-
plying a multiple regression analysis. By the stepwise multiple regres-
sion, a model with the highest determination coefficient was selected
(Table S2). The results show a strong correlation (R2=0.801,
p < 0.001) of DO observed in situ with a linear combination of SST
(°C), SSTm-1 (SST in one month prior, °C) and Chl-am-1 (Chl-a in one

month prior, μg/L) (Table 2). Multicollinearity of three independent
variables were checked using variance inflation factor, and SST and
SSTm-1 showed relatively high collinearity among independent vari-
ables (SST: 2.560, SSTm-1: 2.362, Chl-am-1: 1.175). In spite of potential
multicollinearity issue, those three variables were selected for input
variables based on the results of stepwise multiple regression results
(Table S2). Residuals were normally distributed as the Kolmogorov-
Smirnov (p=0.2) and Shapiro-Wilk statistic (p=0.16) indicated. Re-
sults of residual analysis verifies the applicability of regression model
selected. The existence of influential and outlier observations was not
found in the model (Table S3). Based on the results of the multiple
regression analysis, an empirical DO algorithm can be derived as:

= − ∙ − ∙ + ∙ − +− −DO 0.131 SST 0.132 SST 0.066 Chl a 12.343m m1 1 (2)

The satellite-derived DO data that are monthly- and spatially-aver-
aged for each box in Fig. 1 were compared with the in situ DO to
evaluate the performance of the developed algorithm. Two error in-
dices, ARE and IOA, were calculated for the other half of data samples
that were not used for the algorithm development (Table 2). The error
estimate results show high values of 89.2% for 1-ARE and 78.6% of
IOA, indicating the reliable performance of our model to retrieve the

Fig. 4. Scatter plot of temperature and DO presented as mg/L (upper), and time-series of DO converted into the percent saturation (lower) in surface waters of the
study area based on in situ observation data.
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DO from the satellite data (Fig. 5). Some outliers can be found on the
right bottom corner of Fig. 5, which represents underestimation of DO
by the model developed in this study. Those particular samples were
observed in August of 2006 and 2007 when the water temperature
exceeded over 27 °C and in situ DO was over-saturated more than 120%.
It may imply that one should be careful when applying this DO model
under the circumstance of relatively high water temperature.

The Eq. (2) was applied to all monthly composite MODIS and VIIRS
data collected during 2002 and 2016 period. Monthly DO values were
retrieved by using the empirical algorithm, presenting a monthly DO
map for the study area (Fig. 6). The satellite-derived DO shows high-
resolution spatial variability offshore of Saemangeum dike, with the
exception of some null data points near the coastline and inside the
Saemangeum dike (shown as blank white pixels in Fig. 6).

3.4. Temporal and spatial variability of DO offshore Saemangeum dike

The DO concentration is one of the most commonly used water
quality indicators in coastal and ocean environments (Breitburg et al.,
2018; Diaz and Rosenberg, 2008). In particular, water quality index
(WQI) used by Korean government agencies is heavily dependent on the
bottom DO concentration in the water column (Ministry of Oceans and
Fisheries, 2013b), which has been used for evaluation of coastal man-
agement practices in Korea. That is why, as part of K-MEMS, the DO at
the surface and bottom water has been measured in the vicinity of
Saemangeum dike during the past decades. Based on these in situ ob-
servation datasets, Fig. 7 shows the temporal change of DO offshore
Saemangeum (region D in Fig. 1). The results show a clear seasonal
cycle, whereby relatively high DO during winter (February) and lowest

DO during summer (August). Since the in situ measured data were only
collected every three months, it may only be able to show the seasonal
variability. The datasets cannot prove whether higher-frequency vari-
abilities like monthly patterns exist, due to the limited data frequency.

In order to evaluate monthly variability of DO concentration,
monthly-composite satellite data were used to generate the distribution
of DO concentration offshore Saemangeum area. Fig. 6a and b show the
spatial variability of the DO during August and September 2003, re-
spectively, depicting the water quality condition before the completion
of dikes. One can see that there is relatively higher surface DO dis-
tribution during August than September in 2003 (i.e., relativerly
brighter blue in 6a than 6b). Additionally, this change is more notice-
able in the northern region than in the southern region. It implies that
the satellite-derived approach can provide more synoptic and consistent
DO concentration in the study area.

Fig. 6c and d show the DO during August and September 2012,
respectively, representing the water quality conditions after the com-
pletion of the dike construction. When compared to the condition of
2003, it shows much lower satellite-derived DO during 2012. Such
lower DO during summer as well as higher DO in winter after the
completion of dike construction are also confirmed in the in situ ob-
servation data (see Figs. 3f and 4).

In order to show applicability of the DO model developed in this
study, several satellite-based environmental parameters including DO
concentration are derived for offshore Saemangeum and spatially-
averaged for region D (see Fig. 1 for the location) in each month for the
past 15 years during 2002–2016. There is no monitoring system avail-
able for region D, so the satellite-derived environmental variables
would be considered best available data sets for any environmental
management practice. The change in environmental conditions be-
tween before and after the dike construction can also be observed in
Fig. 7, with better temporal resolution, i.e., monthly variability. The
noticeable change in Chl-a is seen before and after 2006, along with the
change in SST, TSS, and DO, although the latter ones are not as pro-
minent as Chl-a.

The study area, where the spatial averaging was calculated, is lo-
cated directly offshore of the Saemangeum dike, one of the largest sea
dikes of 33.9 km long. After the completion of the dikes in April 2006,
the coastal area experienced significant environmental changes such as
modified tidal currents (Choi et al., 2010; Lee and Lee, 2012; Park et al.,
2014), waves (Lee and Ryu, 2008; Lee, 2010), and sediment transport
patterns (Lee et al., 2008; Min et al., 2012). The limited river discharge
also occurred (Son and Wang, 2009), which results in strong influences
on the benthic ecosystem (Ryu et al., 2014). The construction of dikes
across the two river mouths (Dongjin and Mangyeong Rivers) has also
resulted in reduced input of freshwater and of land-borne materials,
such as nutrients, which was also observed at the satellite remote
sensing scale (Son and Wang, 2009). This change in hydrographic and
environmental settings may induce the long-term variability in en-
vironmental variables including DO concentration, shown in Figs. 3f
and 4. It should be noted, however, that such change is not clearly
observed in the satellite-derived environmental conditions in region D
(Fig. 7) since that area might be relatively distant from the direct in-
fluence of the dike construction. More details about the causes and

Table 2
Result of multiple regression analysis between in situ dissolved oxygen (DO) of surface waters and satellite parameters.

Coefficient Constant R2** p Validation

SST Chl-am-1* SSTm-1* 1-ARE IOA

−0.131
−0.507a

0.066
−0.480a

−0.132
0.042a

12.343 0.801 < 0.001 89.2% 78.6%

* satellite data of one month prior to in situ measuring.
** modified coefficient of determination considering the degree of freedom.
a standardized coefficient (unitless).

Fig. 5. Scatter plot of DO in situ and DO estimated from the satellite-based
model.
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impacts of environmental changes induced by the dike construction,
e.g., why and how the DO regime changed or what extent of such en-
vironmental impacts were, are beyond the scope of this study.

4. Novelty and limitations

Recently, science-based environmental management decision and
planning approaches have been widely applied to various environments
including coastal environments. One of obstacles can be having difficult
to find appropriate scientific data sets for target areas in broad as well
as detail coverages of both temporal and spatial perspective. The pre-
sent study can provide potential solutions for such problems with the
findings that the satellite-derived environmental variables, including
SST, TSS, Chl-a, and DO, would be used as valuable scientific founda-
tions to understand the long-term environmental changes with both
higher temporal and spatial resolution. One of examples may be shown
in Fig. 7, which depicts the temporal variability of such environmental
variables in the region D where there is no monitoring data available.
Thus, further analysis of various satellite-derived environmental para-
meters will provide a strong foundation of understanding in environ-
mental changes. This could be critical in building improved prediction
models that will act as decision-supporting tools and enable to simulate
environmental and ecosystem changes. Thus, proper management de-
cision and planning can be established on the basis of these scientific

findings. At this juncture, it should be noted that such RS data could
also have the following limitations: (1) that the RS data can provide
environmental conditions of surface waters, so users should be careful
to apply such approaches in area where strong vertical variability ex-
ists; and (2) that the RS data are indirect measurements of environ-
mental varialbes so they need to be ground-truthed to increase con-
fidence levels.

5. Conclusions

High resolution of DO data in surface waters can be retrieved from
satellite-derived SST and Chl-a by multiple regression analysis.
Principally, DO and water temperature show a strong inverse re-
lationship, which is consistent with the gas solubility law. In this study,
a multiple regression model was developed to estimate DO in surface
waters based on the comparison of in situ DO observation data with
satellite-derived water temperature and Chl-a concentration. Using the
satellite-derived DO algorithm, long-term changes in DO concentration
can be detected, which can provide the difference in DO before and
after the dike construction in Saemangeum, Korea. In the coastal area of
Korea, over 400 stations used to monitor water quality in coastal areas
seasonally have been operated since 1997; data have been used for the
evaluation of coastal management practices in order to enhance water
quality. With the help of the approach proposed in this study, the water

Fig. 6. Spatial distribution of the dissolved oxygen (DO) concentration derived from MODIS data offshore Saemangeum dike during Aug 2003 (a), Sep 2003 (b), Aug
2012 (c), and Sep 2012 (d). Blank white pixels represent no data available for those locations.

Y.H. Kim, et al. Environment International 134 (2020) 105301

8



quality measures, including DO concentration, will be extended to a
higher resolution both in space and time. The outlined approach de-
monstrates the potential applicability of satellite remote sensing data to
understand environmental changes in coastal areas, useful for appro-
priate management planning and future implementation.
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